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ABSTRACT

A two-layer circular lake model is used to study the mean flow of Lake Ontario during midsummer. By
computing the model only to the second order of amplitude, it is shown that the observed cyclonic
circulation of Lake Ontario during summer is due to the rectified effects of the large, transient, wind-
driven currents. This effect is strongly influenced by model grid resolution and friction.

1. Introduction

Part I of this study (Bennett, 1977) presented a
numerical model which improves the simulation of
Lake Ontario currents. My purposes here are to
analyze the reasons for the improvement and, by
doing so, to determine whether they are unique to
Lake Ontario or not. I will do this by studying a
circular two-layer model that includes the most
essential features of the numerical model but that is
easier to understand. I will only discuss the time-
averaged flow, but I will not assume the flow is
steady. For the two-layer model, the response to a
steady uniform wind is the ‘‘static’’ solution of
thermocline setup. Since this solution only occurs
after many months of steady winds and does not look
like either the observed or the numerical model’s
time-averaged flow, the analysis must be transient.

To summarize the observed flow, Fig. 1 gives the
thermocline depth and longshore volume transport
estimated from Csanady and Scott’s (1974) daily
synoptic surveys for 15 July-15 August 1972.
Except for an upwelling region near the northwest
shore, the thermocline is deeper at the shore than
in mid-lake and there is a cyclonic circulation.
During this period the average wind stress is toward
the east at about 0.15 dyn cm™? and is relatively
uniform over the lake. There are periods of a few
days when the stress is as high as 1 dyn cm™2.

The numerical model reproduces the observed
thermocline shape and currents relatively well if the
shore zones are adequately resolved and friction is
small. However, the simulations were begun with
the shore water warmer than the deep water, a pat-
tern that causes a cyclonic circulation. Thus, the
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simulation with lower friction may be better partly
because the thermal circulation decays slower.

The rectified effect of the large wind-driven up-
wellings and downwellings of the thermocline is
important in causing the cyclonic flow. This is the
most important nonlinearity in the model since
momentum advection is neglected. Cross-sectional
models (Bennett, 1975a,b) have shown that it is the
right sign and magnitude for Lake Ontario. More-
over, Simons (1975) showed that the same is true for
athree-dimensional model. Thus, the questions to be
answered here pertain not to whether or not the
effect occurs but to how it depends on the coeffi-
cients of friction, on the model resolution and on
bottom topography. I want to determine under what
conditions the effect can be increased and whether
it can be explained in simpler terms than before.

I will first examine a very simple model in Section
2. Then, in Sections 3 and 4 I will analyze the circular
model in detail. Finally, in Section 5 I will summarize
both parts of this paper as well as the Bennett and
Lindstrom (1977) paper.

2. A very simple model

To illustrate the mechanism, we suppose 1) fric-
tion is negligible; 2) the lower layer is infinitely deep;
3) all longshore variations are neglected and the
coast is straight; 4) the wind stress is uniform,
parallel to shore and constant in time; and 5) the
longshore component v of the current is geostrophic.

The equations are

oh

-fvr+g —=0, (2.1
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F1G. 1. Lake Ontario thermocline depth and mass transport (15 July—-15 August
1972) estimated from daily synoptic surveys at five transects.
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If at ¢+ = 0 the longshore current is zero, the thermo-
cline is level at a depth H and there is a wall at
x = 0, the initial and boundary conditions are

2.3)

t =0, v=0, h=H
x =0, u=20
XxX—> —o h—->H

If the right-hand side of (2.2) were constant the
thermocline depth would be

h = H + [rytlpi(g"H)'*] explxf(g'h)7?]. (2.4)

This is the familiar coastal jet solution for which
the potential vorticity is uniform (Charney, 1955).
It is possible to solve this problem even with the
longshore derivative terms in (2.2) and (2.3) (Ben-
nett, 1973). However, the effective acceleration
7,/ Poh is not a constant; its variation is as important
as that of the other nonlinear terms.

To analyze this effect, we assume the solution can
be written as a power series in ¢, i.e.,

U=u *+ut+...
v=0t vt + ...
h=H+ ht + ht> + ...

These forms satisfy the initial conditions. If they
are inserted in Eqgs. (2.1)-(2.3) and like powers of ¢
are equated, the resulting thermocline displacement is

h = H + [1,t/py(g' H)"*] exp[ xf(g'h)~*]
- Ya(r, % po*g' HA){[xfl(g'h)V*] + 1}
’ x explxf(g'h)~"].

The difference between this and (2.4) is negative
closer to shore than the radius of deformation and
positive further from shore. At the shore it increases
upwellings and decreases downwellings. The
thermocline shapes predicted by the constant po-
tential vorticity theory (2.4) and the complete
second-order theory (2.5) are given in Fig. 2 for a
wind impulse that, according to linear theory, should
cause a maximum vertical displacement of three-
fourths the original thermocline depth.

If this same problem is done without the inertial
acceleration term udv/dx, or for a finite lower layer
depth, the result is not qualitatively different—the
upwelling is larger than the downwelling. We can use
this simple fact to understand the following more
realistic model.

Imagine a perfectly circular body of water
bounded by a rigid surface and a bottom for which
the depth is only a function of radius. If there is
no bottom stress and no wind stress curl, the angular
momentum of the whole lake cannot change with
time. In addition, without inertial accelerations the
angular momentum contained between any two radii
is also constant. If such a lake is initially at rest,
no matter what the internal density distribution is or
how the wind changes with time, the average of the

2.5)
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mass transport streamfunction around any radius is
always zero.

Now suppose the lake has a shallow thermocline
and is subject to wind impulses from random direc-
tions. Because the upwellings of the thermocline
would be larger than the downwellings, the net effect
of many impulses would be to cause a mean upwell-
ing near the shore and a compensating depression
in the center. Thus, the lower layer must move out-
ward, and if there is no stress across the thermocline,
it must spin anticyclonically to conserve its angular
momentum. Bottom friction acting on this current
will cause a net gain of cyclonic angular momentum.

3. Description of the circular lake model

Since the purposes of these calculations are to iso-
late this effect, and also to evaluate the numerical
method of Part I, they are designed so that:

1) Only forced waves can generate a circulation
with radial symmetry; instabilities of the symmetric
flow are not allowed.

2) It uses the most important features of the
numerical method —increased coastal resolution
and smoothing of the horizontal divergence ficld.

Fig. 3 defines the variables of the model. As in
the numerical model of Part I, the hydrostatic,
Boussinesq and rigid-lid approximations are used.
The interface and bottom stresses are linearly pro-
portional to the shear and the bottom current:

7 = pc(V, — Vy),
Ty = podVs.

3.1
3.2)

It is convenient to write the equations in terms of
the current shear across the thermocline and the
streamfunction ¥. Using the definitions

1 o¥
U =u; — Uy, [uh+u(D—-hy}/D=———,
=ty [k + (D~ BYD= ~— =
1 ov
V=0 < g, h+ v(D - h)]/D=——,
1~ vy, [v3h + vy )1/ D o
12
z=2rov, 1 ov
or D or rD 06*
, Ap
g =8 —,
Po
AU = o 24 00 o2
or r 06 r
AVizuiiv_l—{-ﬁ%-{-ﬁlﬁ,
or r 00 r
N, = —(h/D)AU, — [(D — h)/D]AU,,
N, = —(h/D)AV, — [(D — h)/D]AV,,
_cD + dDh?
hD — 2’
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FiG. 2. Thermocline displacement in an upwelling zone for
two inviscid theories.

the equations of the model are as follows:

ou ah Ty
— - fot+g —= — au
ot or poh
___ 4 N Ly +aUu, (33
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_%—fu-}-g___h_:j_g_— v
at r 60 poh
d ov
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—_— = h) + —-— (v,h) =0 3.5
or "ot F 25 (k) G-)
Y4 D 2
LDy B
at D? or 86 2
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or\ D D 06 or\ D a0
0 el
+ — (*N,) — — N,. (3.6
ar(r ) 3 N (3.6)

These equations were solved in two stages. First
the solution of the linearized problem, which is
separable in 6, is solved; this solution is then
used to compute the second-order corrections. This
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F1G. 3. Definition of terms for a circular lake model.

is equivalent to a low-order spectral model since
in the computer program the solutions are calculated
simultaneously. For a spatiaily uniform wind stress,
the linear solution for any variable can be expressed
in the form

hun = hy(r,f) sin® + hy(r,t) cosé. 3.7

The second-order solution is

h = hy(r,t) + hy(r,t) sin20 + hy(r,t) cos26. (3.8)

The radius of the circular model is 75 km and the
bottom is parabolic, rising from 141 m deep in the
center to 32 m at the shore. The equilibrium depth
H of the thermocline is 16 m and g’ is 1.0 cm s72. As
in Part I, the model was started from rest and driven
by 46 days of wind stress estimated from Lake
Ontario observations of 1 July to 15 August 1972.
The thermocline displacement and streamfunction
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were then avéraged over 15 July to 15 August. As a
first choice the friction coefficients are

=0.001 cms™!, d=0.02cms™, (3.9)

values suggested by the decay times of Bennett
and Lindstrom’s (1977) empirical model.

In addition, smoothing is incorporated into the
numerical method. As in the numerical model of
Part I, this smoothing applies only to the baroclinic
mode and is equivalent to adding a term proportional
to the horizontal divergence to the pressure. For
this model, the baroclinic pressure gradient terms in
(3.3) and (3.4) are evaluated with

Oh

_025fAr* D
gH D-H ot

This smoothing term is proportional to fand Ar? so
that it is formally the same order of error as the
truncation error due to spatial averaging of the
Coriolis term. There are 18 grid points spaced from
1.5 km apart nearshore to 9 km in the center, roughly
the same resolution as in Part I. The numerical
method is similar to the one used in the fully three-
dimensional model, with a few modifications due to
the polar coordinates. For these modifications I used
Williams’ (1969) technique. The computer program
was tested by checking to see that it reproduced
the cases of pure Kelvin wave and topographic wave
propagation, and that it approached the steady-
setup solution for a steady uniform wind. This last
test is the most useful because for this solution the
currents are zero and many programming errors or
numerical instabilities cause the program to fail.

hsmoothed = h

(3.10)

4. Solutions of the circular lake model

The solutions will be presented in three figures,
each of which has three cases. Fig. 4 has cases with
the same grid resolution and friction but with dif-
ferent degrees of nonlinearity. Fig. 5 compares cases
with different values of bottom and interface fric-
tion. Fig. 6 compares cases of different grid resolu-
tion and smoothing. All cases are attempts at simu-
lating the flow of Fig. 1, Lake Ontario’s circulation
averaged over 32 days, 15 July to 15 August 1972,
In these figures, thermocline displacement in meters
is on the left; to compare it with Fig. 1, one should
add 16 m to the model solution. Streamfunction
in units of 10° cm® s™! is on the right hand side of
Figs. 4—6. Except for the Niagara and St. Lawrence
River flows, these numbers can be directly com-
pared to the coastal transports of Fig. 1. All of these
cases are simple variations of the one at the bottom
of Fig. 4.

At the top of Fig. 4 is the solution to the com-
pletely linear problem. There is perfect radial sym-
metry; the thermocline is depressed downwind and
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F1G. 4. Thermocline displacement (m) and streamfunction (10° cm® s™*), 15 July to 15
August 1972, computed with interface friction of 0.001 cm s™! and bottom friction of 0.02
cm s~ : (a) linear theory, (b) second-order thermocline displacements and (c) second-order
thermocline displacements plus the inertial acceleration terms.

has an equal upwelling at the western shore. The
streamfunction field consists of equal cyclonic and
anticyclonic gyres. In the central region the flow is
to the right of the wind; and the return flow, to the
left of the wind, occurs in narrow boundary currents.
This pattern is similar to that predicted by Birch-
field’s (1972) theory for a homogeneous lake. How-

ever, due to stratification, the flow to the right of the
wind is smaller than the Ekman drift predicted by
that theory. '

If this two-layer model were run to the steady
state of thermocline setup, the streamfunction would
be zero, the Ekman drift would be balanced by a
geostrophic upper layer current and the lower layer
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Fi1G. 5. Thermocline displacement (m) and streamfunction (10° cm3 s7!), 15 July to
15 August 1972, computed with both second-order thermocline displacements and
the inertial acceleration terms for three values of friction d: (a) one-fourth of the bottom
friction, (b) twice the bottom friction and (c) four times the interface friction.

current would be zero. Because for this figure the
spindown is incomplete, the solution looks like a
compromise between Birchfield’s theory and the
setup solution.

In the middle of Fig. 4 is the sum of the linear
solution and the solution of the second-order prob-
lem driven by the terms depending on the displace-

ment of the thermocline but without the inertial
acceleration terms. This case is the most similar to
the numerical model of Part I. As we expect from
the simple model of Section 2, the upwelling is
slightly larger than the downwelling and the cy-
clonic gyre is larger than the anticyclonic one. .
The solution at the bottom of Fig. 4 includes both
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FiG. 6. Thermocline displacement (m) and streamfunction (10° cm® s™'), 15 July to
15 August 1972, computed with both second-order thermocline displacements and inertial
effects for the friction coefficients of Fig. 4 but with different grid resolution and smooth-
ing: (a) no smoothing, (b) a uniform 7.5 km grid and (c) a stretched grid with four times
the number of grid points.

finite-amplitude thermocline displacements and
inertial accelerations. The addition of the inertial
accelerations does not change the solution much for
the values of friction and for the grid resolution used
here. Near the center of the lake, however, there is
a cyclonic curvature of the streamlines. The reason

for this is the same as for the anticyclonic gyre
caused by flow over a local rise in the seafioor in
the theory of Huppert and Bryan (1976). At the
extremum, the bottom slope is zero and small
displacements of fluid do not cause vorticity to be
generated by topographic stretching. To a second
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approximation, however, the water at the center
has to have come from a shallower depth and must
therefore have a cyclonic vorticity.

Fig. 5 presents solutions to illustrate the effects of
varying friction. First, at the top is the solution for
a bottom friction coefficient of 0.005, one-fourth that
of Fig. 4. For lower bottom friction the mean coastal
flow is weaker, but the cyclonic flow in the center is
stronger and forms a closed gyre. In the middle of the
figure is the solution for twice the value of bottom
friction (i.e., eight times the value of the solution
above it). For this higher bottom friction, the fiow is
strongest in the coastal zone. The cyclonic gyre is
stronger than in the bottom of Fig. 4 and the anti-
cyclonic gyre is weaker. This can be understood
from the logic of Section 2; the source of cyclonic
angular momentum is the bottom stress.

At the bottom of Fig. 5 is the solution for four
times the interface friction. Increasing the interface
friction has the effect of decreasing the strength of
the mean flow simply because it decreases the
amplitude of the primary currents driving it.

The effects of the numerical method are examined
in Fig. 6. At the top is the solution obtained by
eliminating the smoothing. This solution is nearly
identical to the bottom of Fig. 4. The reason the
smoothing has little effect on the mean flow is that
the linear motions driving it have long time scales
compared to f~!; thus most of the energy is in non-
divergent motion and is little affected by the smooth-
ing term (3.10) proportional to the horizontal diver-
gence. :

In the middle of Fig. 6 is the solution for the
same parameters as the bottom of Fig. 4 but with a
constant grid size of 7.5 km, 10 grid points between
the center and the shore. The effect of decreasing
the resolution is to lower the amplitude of the linear
solution by spreading the boundary layer vertical
motion over a wider zone. Thus, the mean thermo-
cline pattern also has wider coastal zones and the
streamfunction pattern is more symmetric. In this
respect, decreasing resolution has an effect similar
to that of increasing the interface friction coefficient.

Finally, at the bottom of Fig. 6 is the solution for
a stretched grid of 72 points—four times that of
Fig. 4, with minimum grid size of 0.4 km. The linear
solution for this case, not shown here, is nearly
identical to the top of Fig. 4; this is because the
linear time-averaged solution does not have a bound-
ary layer character. Increasing the resolution, how-
ever, has a large effect on the nonlinear terms. The
major differences are that the cyclonic gyre is larger
and the anticyclonic gyre is smaller. There is a nar-
row band of cyclonic flow at all parts of the shore.
This fact is encouraging because the numerical
model of Part I failed to reproduce the westward flow
near the Oshawa shore. The circular model suggests
that even better resolution may remedy this.
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S. Summary

This paper concludes a three-part analysis of Lake
Ontario’s circulation for 15 July to 15 August 1972, a
period of the International Field Year for the Great
Lakes when detailed measurements were made. It is
now appropriate to summarize all of them and to dis-
cuss some of the wider implications of the work.

The first paper (Bennett, 1977) pointed out some of
the deficiencies of using a uniform 5 km grid model
to compute the currents, discussed some of the
possible reasons for them, and presented an alterna-
tive model that uses a variable grid resolution to
resolve the coastal boundary layers. The uniform
grid model has two major deficiencies. First, it fails
to reproduce the fact that the mean current near the
north shore is toward the west—opposite the wind.
Second, it fails to reproduce the strength of the re-
versals of longshore current and thermocline dis-
placement. Because linear models of both homoge-
neous and stratified lakes predict complex boundary
layers, it is reasonable to expect that increased
model resolution would help. The analysis of the
stretched grid model supports this thesis.

The second paper (Bennett and Lindstrom, 1977)
developed an empirical description of the flow in
the coastal boundary layer. The mean flow is
basically a geostrophic cyclonic gyre with weak cur-
rents below the thermocline and a S cm s™! long-
shore current above the thermocline. The mean
thermocline is depressed nearshore in accordance
with geostrophic equilibrium. The deviations from
this state were described by the solutions of wave
equations driven by the longshore component of the
wind stress. These linear equations admit very
simple interpretations in terms of elementary
momentum balances and coastal wave theories.
Both the values of the wind forcing coefficients
and the empirical decay times suggest that the basic
approach of the numerical models is correct and
that efforts to increase resolution and use lower
friction coefficients would be fruitful.

Finally, in this paper I presented a simple non-
linear upwelling theory and a circular numerical
model. This circular lake analogue was used to iso-
late the mechanisms operating in the more compli-
cated model and to examine the importance of the
physical parameters and the grid resolution. This
model shows that the observed cyclonic mean flow
is due to the rectified effects of the transient motion.

The effects of friction and resolution were shown
to be quite complex. Reducing bottom friction tends
to increase the magnitude of the cyclonic flow but
to confine it to the central region. Further investi-
gation of this effect has revealed that this aspect
can be explained with a single-layer, rigid-lid
model. This flow can be thought of as the rectified
flow due to forced topographic waves. Both in-
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creasing thermocline friction and increasing the grid
size tend to reduce the magnitude of the baroclinic
response and thus underestimate the effect of large
thermocline displacements investigated with the
simple model of Section 2.

The best agreement with the observed flow was
obtained with the friction coefficients estimated
from the observed decay times of the linear waves
and with very high grid resolution. Thus, the basic
conclusions of this work are that the transient fea-
tures of Lake Ontario’s currents can be explained
by simple linear wave models and that the mean
flow can be explained by the second-order effects of
the waves. If these conclusions are correct, models
that take into account the complex geometries of
real lakes and require detailed estimates of atmos-
pheric forcing are not necessary. If the effects of
model grid resolution are as strong as shown here,
such complex models may also be impossible. It
would be worthwhile to test whether these conclu-
sions are true for other lakes and to investigate both
linear and second-order wave theories in more
detail.
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